Paper Reading AI Learner

Proverbs Run in Pairs: Evaluating Proverb Translation Capability of Large Language Model

2025-01-21 07:54:22
Minghan Wang, Viet-Thanh Pham, Farhad Moghimifar, Thuy-Trang Vu

Abstract

Despite achieving remarkable performance, machine translation (MT) research remains underexplored in terms of translating cultural elements in languages, such as idioms, proverbs, and colloquial expressions. This paper investigates the capability of state-of-the-art neural machine translation (NMT) and large language models (LLMs) in translating proverbs, which are deeply rooted in cultural contexts. We construct a translation dataset of standalone proverbs and proverbs in conversation for four language pairs. Our experiments show that the studied models can achieve good translation between languages with similar cultural backgrounds, and LLMs generally outperform NMT models in proverb translation. Furthermore, we find that current automatic evaluation metrics such as BLEU, CHRF++ and COMET are inadequate for reliably assessing the quality of proverb translation, highlighting the need for more culturally aware evaluation metrics.

Abstract (translated)

尽管机器翻译(MT)在性能上取得了显著成就,但在翻译语言中的文化元素方面仍存在不足,例如成语、谚语和口语表达。本文研究了最先进的神经机器翻译(NMT)和大型语言模型(LLMs)在翻译谚语方面的能力,这些谚语深深植根于特定的文化背景之中。我们为四种语言对构建了一个独立谚语和会话语境中的谚语的翻译数据集。我们的实验表明,对于文化背景相似的语言而言,所研究的模型能够实现较好的翻译效果,并且大型语言模型在谚语翻译中通常优于神经机器翻译模型。此外,我们发现现有的自动评估指标(如BLEU、CHRF++和COMET)不足以可靠地衡量谚语翻译的质量,这突显了需要更多具有文化意识的评估标准的重要性。

URL

https://arxiv.org/abs/2501.11953

PDF

https://arxiv.org/pdf/2501.11953.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot