Paper Reading AI Learner

Multiple Object Tracking with Motion and Appearance Cues

2019-09-01 03:54:40
Weiqiang Li, Jiatong Mu, Guizhong Liu

Abstract

Due to better video quality and higher frame rate, the performance of multiple object tracking issues has been greatly improved in recent years. However, in real application scenarios, camera motion and noisy per frame detection results degrade the performance of trackers significantly. High-speed and high-quality multiple object trackers are still in urgent demand. In this paper, we propose a new multiple object tracker following the popular tracking-by-detection scheme. We tackle the camera motion problem with an optical flow network and utilize an auxiliary tracker to deal with the missing detection problem. Besides, we use both the appearance and motion information to improve the matching quality. The experimental results on the VisDrone-MOT dataset show that our approach can improve the performance of multiple object tracking significantly while achieving a high efficiency.

Abstract (translated)

URL

https://arxiv.org/abs/1909.00318

PDF

https://arxiv.org/pdf/1909.00318.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot