Paper Reading AI Learner

Efficient Lung Ultrasound Severity Scoring Using Dedicated Feature Extractor

2025-01-21 22:28:22
Jiaqi Guo, Yunnan Wu, Evangelos Kaimakamis, Georgios Petmezas, Vasileios E. Papageorgiou, Nicos Maglaveras, Aggelos K. Katsaggelos

Abstract

With the advent of the COVID-19 pandemic, ultrasound imaging has emerged as a promising technique for COVID-19 detection, due to its non-invasive nature, affordability, and portability. In response, researchers have focused on developing AI-based scoring systems to provide real-time diagnostic support. However, the limited size and lack of proper annotation in publicly available ultrasound datasets pose significant challenges for training a robust AI model. This paper proposes MeDiVLAD, a novel pipeline to address the above issue for multi-level lung-ultrasound (LUS) severity scoring. In particular, we leverage self-knowledge distillation to pretrain a vision transformer (ViT) without label and aggregate frame-level features via dual-level VLAD aggregation. We show that with minimal finetuning, MeDiVLAD outperforms conventional fully-supervised methods in both frame- and video-level scoring, while offering classification reasoning with exceptional quality. This superior performance enables key applications such as the automatic identification of critical lung pathology areas and provides a robust solution for broader medical video classification tasks.

Abstract (translated)

随着COVID-19疫情的爆发,超声成像因其非侵入性、经济性和便携性而成为一种有前景的COVID-19检测技术。对此,研究人员专注于开发基于AI的支持实时诊断的评分系统。然而,公开可用的超声数据集规模有限且标注不充分,这给训练稳健的AI模型带来了重大挑战。本文提出了一种名为MeDiVLAD的新颖管道,旨在解决多级肺部超声(LUS)严重程度评分中的上述问题。具体来说,我们利用自我知识蒸馏来在无标签的情况下预训练视觉变换器(ViT),并通过双层VLAD聚合技术聚集帧级别的特征。结果显示,在仅进行少量微调的情况下,MeDiVLAD在帧级和视频级评分方面均优于传统的完全监督方法,并且能够提供质量卓越的分类推理能力。这种优越性能使得诸如自动识别关键肺部病理区域等重要应用成为可能,同时也为更广泛的医学视频分类任务提供了稳健解决方案。

URL

https://arxiv.org/abs/2501.12524

PDF

https://arxiv.org/pdf/2501.12524.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot