Abstract
The standard ``serial'' (aka ``singleton'') model of belief contraction models the manner in which an agent's corpus of beliefs responds to the removal of a single item of information. One salient extension of this model introduces the idea of ``parallel'' (aka ``package'' or ``multiple'') change, in which an entire set of items of information are simultaneously removed. Existing research on the latter has largely focussed on single-step parallel contraction: understanding the behaviour of beliefs after a single parallel contraction. It has also focussed on generalisations to the parallel case of serial contraction operations whose characteristic properties are extremely weak. Here we consider how to extend serial contraction operations that obey stronger properties. Potentially more importantly, we also consider the iterated case: the behaviour of beliefs after a sequence of parallel contractions. We propose a general method for extending serial iterated belief change operators to handle parallel change based on an n-ary generalisation of Booth & Chandler's TeamQueue binary order aggregators.
Abstract (translated)
标准的“序列”(又称“单一”)信念收缩模型描述了代理人在移除单个信息项时其信念集合的反应方式。这一模型的一个显著扩展引入了“并行”(也称“包”或“多重”)变更的概念,其中整个一组信息项同时被移除。现有研究主要集中在单一步骤的并行收缩:理解在一次并行收缩后信念的行为表现。此外,这些研究还关注了将序列收缩操作的一般化特性扩展到并行情况,而这些序列收缩操作的特征属性极为薄弱。 在此背景下,我们考虑如何将遵守更强性质的序列收缩操作进行扩展。更值得关注的是,我们也探讨了迭代的情况:在一系列平行收缩后信念的行为表现。为此,我们提出了一种基于布斯与钱德勒(Booth & Chandler)团队队列二元顺序聚合器的n元泛化的通用方法来处理并行变更,以扩展序列迭代信念改变操作。 这个提议的方法旨在为处理复杂的信念系统变化提供一个更加灵活且功能强大的框架。
URL
https://arxiv.org/abs/2501.13295