Paper Reading AI Learner

Parallel Belief Contraction via Order Aggregation

2025-01-23 00:42:16
Jake Chandler, Richard Booth

Abstract

The standard ``serial'' (aka ``singleton'') model of belief contraction models the manner in which an agent's corpus of beliefs responds to the removal of a single item of information. One salient extension of this model introduces the idea of ``parallel'' (aka ``package'' or ``multiple'') change, in which an entire set of items of information are simultaneously removed. Existing research on the latter has largely focussed on single-step parallel contraction: understanding the behaviour of beliefs after a single parallel contraction. It has also focussed on generalisations to the parallel case of serial contraction operations whose characteristic properties are extremely weak. Here we consider how to extend serial contraction operations that obey stronger properties. Potentially more importantly, we also consider the iterated case: the behaviour of beliefs after a sequence of parallel contractions. We propose a general method for extending serial iterated belief change operators to handle parallel change based on an n-ary generalisation of Booth & Chandler's TeamQueue binary order aggregators.

Abstract (translated)

标准的“序列”(又称“单一”)信念收缩模型描述了代理人在移除单个信息项时其信念集合的反应方式。这一模型的一个显著扩展引入了“并行”(也称“包”或“多重”)变更的概念,其中整个一组信息项同时被移除。现有研究主要集中在单一步骤的并行收缩:理解在一次并行收缩后信念的行为表现。此外,这些研究还关注了将序列收缩操作的一般化特性扩展到并行情况,而这些序列收缩操作的特征属性极为薄弱。 在此背景下,我们考虑如何将遵守更强性质的序列收缩操作进行扩展。更值得关注的是,我们也探讨了迭代的情况:在一系列平行收缩后信念的行为表现。为此,我们提出了一种基于布斯与钱德勒(Booth & Chandler)团队队列二元顺序聚合器的n元泛化的通用方法来处理并行变更,以扩展序列迭代信念改变操作。 这个提议的方法旨在为处理复杂的信念系统变化提供一个更加灵活且功能强大的框架。

URL

https://arxiv.org/abs/2501.13295

PDF

https://arxiv.org/pdf/2501.13295.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot