Paper Reading AI Learner

Improving Estonian Text Simplification through Pretrained Language Models and Custom Datasets

2025-01-26 18:10:20
Eduard Barbu, Meeri-Ly Muru, Sten Marcus Malva

Abstract

This study introduces an approach to Estonian text simplification using two model architectures: a neural machine translation model and a fine-tuned large language model (LLaMA). Given the limited resources for Estonian, we developed a new dataset, the Estonian Simplification Dataset, combining translated data and GPT-4.0-generated simplifications. We benchmarked OpenNMT, a neural machine translation model that frames text simplification as a translation task, and fine-tuned the LLaMA model on our dataset to tailor it specifically for Estonian simplification. Manual evaluations on the test set show that the LLaMA model consistently outperforms OpenNMT in readability, grammaticality, and meaning preservation. These findings underscore the potential of large language models for low-resource languages and provide a basis for further research in Estonian text simplification.

Abstract (translated)

这项研究介绍了一种使用两种模型架构对爱沙尼亚语文本进行简化的方法:神经机器翻译模型和经过微调的大规模语言模型(LLaMA)。鉴于爱沙尼亚语资源有限,我们开发了一个新的数据集——爱沙尼亚文本简化数据集,该数据集结合了翻译数据和GPT-4.0生成的简化文本。我们将OpenNMT作为基准,这是一种将文本简化视为翻译任务的神经机器翻译模型,并在我们的数据集上对LLaMA模型进行微调,使其专门适用于爱沙尼亚语文本简化。手动评估测试集结果显示,与OpenNMT相比,LLaMA模型在可读性、语法正确性和意义保持方面始终表现更优。这些发现强调了大规模语言模型在低资源语言中的潜力,并为进一步研究爱沙尼亚语文本简化提供了基础。

URL

https://arxiv.org/abs/2501.15624

PDF

https://arxiv.org/pdf/2501.15624.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot