Paper Reading AI Learner

Document-Level Sentiment Analysis of Urdu Text Using Deep Learning Techniques

2025-01-23 21:25:37
Ammarah Irum, M. Ali Tahir

Abstract

Document level Urdu Sentiment Analysis (SA) is a challenging Natural Language Processing (NLP) task as it deals with large documents in a resource-poor language. In large documents, there are ample amounts of words that exhibit different viewpoints. Deep learning (DL) models comprise of complex neural network architectures that have the ability to learn diverse features of the data to classify various sentiments. Besides audio, image and video classification; DL algorithms are now extensively used in text-based classification problems. To explore the powerful DL techniques for Urdu SA, we have applied five different DL architectures namely, Bidirectional Long Short Term Memory (BiLSTM), Convolutional Neural Network (CNN), Convolutional Neural Network with Bidirectional Long Short Term Memory (CNN-BiLSTM), Bidirectional Encoder Representation from Transformer (BERT). In this paper, we have proposed a DL hybrid model that integrates BiLSTM with Single Layer Multi Filter Convolutional Neural Network (BiLSTM-SLMFCNN). The proposed and baseline techniques are applied on Urdu Customer Support data set and IMDB Urdu movie review data set by using pretrained Urdu word embeddings that are suitable for (SA) at the document level. Results of these techniques are evaluated and our proposed model outperforms all other DL techniques for Urdu SA. BiLSTM-SLMFCNN outperformed the baseline DL models and achieved 83{\%}, 79{\%}, 83{\%} and 94{\%} accuracy on small, medium and large sized IMDB Urdu movie review data set and Urdu Customer Support data set respectively.

Abstract (translated)

文档级别的乌尔都语情感分析(SA)是一项具有挑战性的自然语言处理(NLP)任务,因为它涉及在资源有限的语言中处理大量文本。在大型文档中,有许多词汇展示了不同的观点和视角。深度学习(DL)模型包含复杂的神经网络架构,能够从数据中学习各种特征以分类不同的情感。除了音频、图像和视频分类之外,如今深度学习算法也被广泛应用于基于文本的分类问题。 为了探索强大的DL技术用于乌尔都语情感分析,我们应用了五种不同的DL架构:双向长短期记忆(BiLSTM)、卷积神经网络(CNN)、带有双向长短期记忆的卷积神经网络(CNN-BiLSTM)、变压器编码器表示从变换器(BERT)。在此论文中,我们提出了一种将双向长短期记忆与单层多滤波卷积神经网络相结合的DL混合模型(BiLSTM-SLMFCNN)。我们将所提出的和基准方法应用于乌尔都语客户支持数据集和IMDb乌尔都语电影评论数据集,并使用了适用于文档级情感分析的预训练乌尔都词嵌入。我们评估了这些技术的结果,我们的提议模型在乌尔都语SA中优于所有其他DL技术。 BiLSTM-SLMFCNN超越了基准DL模型,在小型、中型和大型IMDb乌尔都语电影评论数据集以及乌尔都语客户支持数据集中分别实现了83%、79%、83%和94%的准确率。

URL

https://arxiv.org/abs/2501.17175

PDF

https://arxiv.org/pdf/2501.17175.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot