Paper Reading AI Learner

Toward Task Generalization via Memory Augmentation in Meta-Reinforcement Learning

2025-02-03 17:00:19
Kaixi Bao, Chenhao Li, Yarden As, Andreas Krause, Marco Hutter

Abstract

In reinforcement learning (RL), agents often struggle to perform well on tasks that differ from those encountered during training. This limitation presents a challenge to the broader deployment of RL in diverse and dynamic task settings. In this work, we introduce memory augmentation, a memory-based RL approach to improve task generalization. Our approach leverages task-structured augmentations to simulate plausible out-of-distribution scenarios and incorporates memory mechanisms to enable context-aware policy adaptation. Trained on a predefined set of tasks, our policy demonstrates the ability to generalize to unseen tasks through memory augmentation without requiring additional interactions with the environment. Through extensive simulation experiments and real-world hardware evaluations on legged locomotion tasks, we demonstrate that our approach achieves zero-shot generalization to unseen tasks while maintaining robust in-distribution performance and high sample efficiency.

Abstract (translated)

在强化学习(RL)中,代理通常难以在与训练期间遇到的任务不同的任务上表现出色。这种限制对将RL广泛部署到多变和动态的任务环境中构成了挑战。在这项工作中,我们引入了记忆增强技术,这是一种基于记忆的RL方法,旨在改进任务泛化能力。我们的方法利用任务结构化的增强来模拟可能的分布外场景,并通过整合内存机制使策略能够根据上下文进行适应性调整。在一组预定义的任务上训练后,我们的策略可以通过记忆增强展示出对未见任务的一般化能力,而无需与环境进一步交互。 通过广泛的仿真实验和在腿部步行任务上的真实世界硬件评估,我们证明了我们的方法能够在保持分布内性能的稳健性和高样本效率的同时实现对未见任务的零次学习泛化。

URL

https://arxiv.org/abs/2502.01521

PDF

https://arxiv.org/pdf/2502.01521.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot