Paper Reading AI Learner

Learning Rich Representations For Structured Visual Prediction Tasks


Abstract

We describe an approach to learning rich representations for images, that enables simple and effective predictors in a range of vision tasks involving spatially structured maps. Our key idea is to map small image elements to feature representations extracted from a sequence of nested regions of increasing spatial extent. These regions are obtained by "zooming out" from the pixel/superpixel all the way to scene-level resolution, and hence we call these zoom-out features. Applied to semantic segmentation and other structured prediction tasks, our approach exploits statistical structure in the image and in the label space without setting up explicit structured prediction mechanisms, and thus avoids complex and expensive inference. Instead image elements are classified by a feedforward multilayer network with skip-layer connections spanning the zoom-out levels. When used in conjunction with modern neural architectures such as ResNet, DenseNet and NASNet (to which it is complementary) our approach achieves competitive accuracy on segmentation benchmarks. In addition, we propose an approach for learning category-level semantic segmentation purely from image-level classification tag. It exploits localization cues that emerge from training a modified zoom-out architecture tailored for classification tasks, to drive a weakly supervised process that automatically labels a sparse, diverse training set of points likely to belong to classes of interest. Finally, we introduce data-driven regularization functions for the supervised training of CNNs. Our innovation takes the form of a regularizer derived by learning an autoencoder over the set of annotations. This approach leverages an improved representation of label space to inform extraction of features from images

Abstract (translated)

URL

https://arxiv.org/abs/1908.11820

PDF

https://arxiv.org/pdf/1908.11820.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot