Paper Reading AI Learner

High-Fidelity Simultaneous Speech-To-Speech Translation

2025-02-05 17:18:55
Tom Labiausse, Laurent Mazar\'e, Edouard Grave, Patrick P\'erez, Alexandre D\'efossez, Neil Zeghidour

Abstract

We introduce Hibiki, a decoder-only model for simultaneous speech translation. Hibiki leverages a multistream language model to synchronously process source and target speech, and jointly produces text and audio tokens to perform speech-to-text and speech-to-speech translation. We furthermore address the fundamental challenge of simultaneous interpretation, which unlike its consecutive counterpart, where one waits for the end of the source utterance to start translating, adapts its flow to accumulate just enough context to produce a correct translation in real-time, chunk by chunk. To do so, we introduce a weakly-supervised method that leverages the perplexity of an off-the-shelf text translation system to identify optimal delays on a per-word basis and create aligned synthetic data. After supervised training, Hibiki performs adaptive, simultaneous speech translation with vanilla temperature sampling. On a French-English simultaneous speech translation task, Hibiki demonstrates state-of-the-art performance in translation quality, speaker fidelity and naturalness. Moreover, the simplicity of its inference process makes it compatible with batched translation and even real-time on-device deployment. We provide examples as well as models and inference code.

Abstract (translated)

我们介绍了一种名为Hibiki的解码器模型,用于实时语音翻译。Hibiki利用一个多流语言模型同步处理源语音和目标语音,并同时生成文本和音频令牌以执行语音到文本以及语音到语音的翻译。此外,我们还解决了实时口译的基本挑战,不同于连续口译(后者需要等待源语句结束才开始翻译),实时口译必须根据积累足够的上下文来逐块地产生正确的实时翻译进行调整。 为了实现这一目标,我们引入了一种弱监督方法,利用现成的文本翻译系统的困惑度(perplexity)来识别每个单词的最佳延迟,并创建对齐的人工合成数据。经过有监督训练后,Hibiki能够使用简单的温度抽样进行自适应、实时语音翻译。在法语-英语的实时语音翻译任务中,Hibiki展示了业界领先的翻译质量、说话人真实性和自然度。 此外,其推理过程的简洁性使其与批处理翻译甚至设备上的实时部署兼容。我们提供了示例模型以及推理代码。

URL

https://arxiv.org/abs/2502.03382

PDF

https://arxiv.org/pdf/2502.03382.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot