Paper Reading AI Learner

Online Sensor Hallucination via Knowledge Distillation for Multimodal Image Classification

2019-08-28 05:55:09
Saurabh Kumar, Biplab Banerjee, Subhasis Chaudhuri

Abstract

We deal with the problem of information fusion driven satellite image/scene classification and propose a generic hallucination architecture considering that all the available sensor information are present during training while some of the image modalities may be absent while testing. It is well-known that different sensors are capable of capturing complementary information for a given geographical area and a classification module incorporating information from all the sources are expected to produce an improved performance as compared to considering only a subset of the modalities. However, the classical classifier systems inherently require all the features used to train the module to be present for the test instances as well, which may not always be possible for typical remote sensing applications (say, disaster management). As a remedy, we provide a robust solution in terms of a hallucination module that can approximate the missing modalities from the available ones during the decision-making stage. In order to ensure better knowledge transfer during modality hallucination, we explicitly incorporate concepts of knowledge distillation for the purpose of exploring the privileged (side) information in our framework and subsequently introduce an intuitive modular training approach. The proposed network is evaluated extensively on a large-scale corpus of PAN-MS image pairs (scene recognition) as well as on a benchmark hyperspectral image dataset (image classification) where we follow different experimental scenarios and find that the proposed hallucination based module indeed is capable of capturing the multi-source information, albeit the explicit absence of some of the sensor information, and aid in improved scene characterization.

Abstract (translated)

URL

https://arxiv.org/abs/1908.10559

PDF

https://arxiv.org/pdf/1908.10559.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot