Paper Reading AI Learner

No Peeking through My Windows: Conserving Privacy in Personal Drones

2019-08-26 22:06:55
Alem Fitwi, Yu Chen, Sencun Zhu

Abstract

The drone technology has been increasingly used by many tech-savvy consumers, a number of defense companies, hobbyists and enthusiasts during the last ten years. Drones often come in various sizes and are designed for a multitude of purposes. Nowadays many people have small-sized personal drones for entertainment, filming, or transporting items from one place to another. However, personal drones lack a privacy-preserving mechanism. While in mission, drones often trespass into the personal territories of other people and capture photos or videos through windows without their knowledge and consent. They may also capture video or pictures of people walking, sitting, or doing private things within the drones' reach in clear form without their go permission. This could potentially invade people's personal privacy. This paper, therefore, proposes a lightweight privacy-preserving-by-design method that prevents drones from peeking through windows of houses and capturing people doing private things at home. It is a fast window object detection and scrambling technology built based on image-enhancing, morphological transformation, segmentation and contouring processes (MASP). Besides, a chaotic scrambling technique is incorporated into it for privacy purpose. Hence, this mechanism detects window objects in every image or frame of a real-time video and masks them chaotically to protect the privacy of people. The experimental results validated that the proposed MASP method is lightweight and suitable to be employed in drones, considered as edge devices.

Abstract (translated)

URL

https://arxiv.org/abs/1908.09935

PDF

https://arxiv.org/pdf/1908.09935.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot