Paper Reading AI Learner

Using LSTMs to Model the Java Programming Language

2019-08-26 00:43:32
Brendon Boldt

Abstract

Recurrent neural networks (RNNs), specifically long-short term memory networks (LSTMs), can model natural language effectively. This research investigates the ability for these same LSTMs to perform next "word" prediction on the Java programming language. Java source code from four different repositories undergoes a transformation that preserves the logical structure of the source code and removes the code's various specificities such as variable names and literal values. Such datasets and an additional English language corpus are used to train and test standard LSTMs' ability to predict the next element in a sequence. Results suggest that LSTMs can effectively model Java code achieving perplexities under 22 and accuracies above 0.47, which is an improvement over LSTM's performance on the English language which demonstrated a perplexity of 85 and an accuracy of 0.27. This research can have applicability in other areas such as syntactic template suggestion and automated bug patching.

Abstract (translated)

URL

https://arxiv.org/abs/1908.11685

PDF

https://arxiv.org/pdf/1908.11685.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot