Paper Reading AI Learner

Flow-Motion and Depth Network for Monocular Stereo and Beyond

2019-09-12 04:49:38
Kaixuan Wang, Shaojie Shen

Abstract

We propose a learning-based method that solves monocular stereo and can be extended to fuse depth information from multiple target frames. Given two unconstrained images from a monocular camera with known intrinsic calibration, our network estimates relative camera poses and the depth map of the source image. The core contribution of the proposed method is threefold. First, a network is tailored for static scenes that jointly estimates the optical flow and camera motion. By the joint estimation, the optical flow search space is gradually reduced resulting in an efficient and accurate flow estimation. Second, a novel triangulation layer is proposed to encode the estimated optical flow and camera motion while avoiding common numerical issues caused by epipolar. Third, beyond two-view depth estimation, we further extend the above networks to fuse depth information from multiple target images and estimate the depth map of the source image. To further benefit the research community, we introduce tools to generate photorealistic structure-from-motion datasets such that deep networks can be well trained and evaluated. The proposed method is compared with previous methods and achieves state-of-the-art results within less time. Images from real-world applications and Google Earth are used to demonstrate the generalization ability of the method.

Abstract (translated)

URL

https://arxiv.org/abs/1909.05452

PDF

https://arxiv.org/pdf/1909.05452.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot