Paper Reading AI Learner

I-SAFE: Instant Suspicious Activity identiFication at the Edge using Fuzzy Decision Making

2019-09-12 16:14:37
Seyed Yahya Nikouei, Yu Chen, Alexander Aved, Erik Blasch, Timothy R. Faughnan

Abstract

Urban imagery usually serves as forensic analysis and by design is available for incident mitigation. As more imagery collected, it is harder to narrow down to certain frames among thousands of video clips to a specific incident. A real-time, proactive surveillance system is desirable, which could instantly detect dubious personnel, identify suspicious activities, or raise momentous alerts. The recent proliferation of the edge computing paradigm allows more data-intensive tasks to be accomplished by smart edge devices with lightweight but powerful algorithms. This paper presents a forensic surveillance strategy by introducing an Instant Suspicious Activity identiFication at the Edge (I-SAFE) using fuzzy decision making. A fuzzy control system is proposed to mimic the decision-making process of a security officer. Decisions are made based on video features extracted by a lightweight Deep Machine Learning (DML) model. Based on the requirements from the first-line law enforcement officers, several features are selected and fuzzified to cope with the state of uncertainty that exists in the officers' decision-making process. Using features in the edge hierarchy minimizes the communication delay such that instant alerting is achieved. Additionally, leveraging the Microservices architecture, the I-SAFE scheme possesses good scalability given the increasing complexities at the network edge. Implemented as an edge-based application and tested using exemplary and various labeled dataset surveillance videos, the I-SAFE scheme raises alerts by identifying the suspicious activity in an average of 0.002 seconds. Compared to four other state-of-the-art methods over two other data sets, the experimental study verified the superiority of the I-SAFE decentralized method.

Abstract (translated)

URL

https://arxiv.org/abs/1909.05776

PDF

https://arxiv.org/pdf/1909.05776.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot