Paper Reading AI Learner

Real-time Video Prediction With Fast Video Interpolation Model and Prediction Training

2025-03-29 18:48:46
Shota Hirose, Kazuki Kotoyori, Kasidis Arunruangsirilert, Fangzheng Lin, Heming Sun, Jiro Katto

Abstract

Transmission latency significantly affects users' quality of experience in real-time interaction and actuation. As latency is principally inevitable, video prediction can be utilized to mitigate the latency and ultimately enable zero-latency transmission. However, most of the existing video prediction methods are computationally expensive and impractical for real-time applications. In this work, we therefore propose real-time video prediction towards the zero-latency interaction over networks, called IFRVP (Intermediate Feature Refinement Video Prediction). Firstly, we propose three training methods for video prediction that extend frame interpolation models, where we utilize a simple convolution-only frame interpolation network based on IFRNet. Secondly, we introduce ELAN-based residual blocks into the prediction models to improve both inference speed and accuracy. Our evaluations show that our proposed models perform efficiently and achieve the best trade-off between prediction accuracy and computational speed among the existing video prediction methods. A demonstration movie is also provided at this http URL.

Abstract (translated)

传输延迟显著影响用户在实时互动和操作中的体验质量。由于延迟不可避免,可以利用视频预测技术来减少延迟,并最终实现零延迟传输。然而,现有的大多数视频预测方法计算成本高昂,在实时应用中不切实际。为此,我们提出了一种名为 IFRVP(中间特征细化视频预测)的方法,旨在通过网络实现零延迟互动。 首先,我们为视频预测提出了三种训练方法,这些方法基于帧插值模型进行扩展,并使用了一个简单的仅包含卷积的帧插值网络,该网络基于IFRNet。其次,我们在预测模型中引入了基于ELAN(Efficient Lightweight Architecture Network)的残差块,以同时提高推理速度和准确性。 我们的评估表明,所提出的模型在现有的视频预测方法中表现出色,在预测准确性和计算速度之间实现了最佳权衡。此外,我们还提供了一个展示电影,地址为[此处请手动访问提供的URL]。 这个研究的目标是通过有效的视频预测技术来减少网络传输中的延迟问题,并且提高用户实时互动的体验质量。

URL

https://arxiv.org/abs/2503.23185

PDF

https://arxiv.org/pdf/2503.23185.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot