Paper Reading AI Learner

SRVP: Strong Recollection Video Prediction Model Using Attention-Based Spatiotemporal Correlation Fusion

2025-04-10 07:36:50
Yuseon Kim, Kyongseok Park

Abstract

Video prediction (VP) generates future frames by leveraging spatial representations and temporal context from past frames. Traditional recurrent neural network (RNN)-based models enhance memory cell structures to capture spatiotemporal states over extended durations but suffer from gradual loss of object appearance details. To address this issue, we propose the strong recollection VP (SRVP) model, which integrates standard attention (SA) and reinforced feature attention (RFA) modules. Both modules employ scaled dot-product attention to extract temporal context and spatial correlations, which are then fused to enhance spatiotemporal representations. Experiments on three benchmark datasets demonstrate that SRVP mitigates image quality degradation in RNN-based models while achieving predictive performance comparable to RNN-free architectures.

Abstract (translated)

视频预测(VP)通过利用过去帧的空间表示和时间上下文来生成未来的画面。传统的基于递归神经网络(RNN)的模型通过增强记忆单元结构以捕捉长时间跨度内的时空状态,但随着时间推移会逐渐丧失物体外观细节。为了解决这一问题,我们提出了强回忆视频预测(SRVP)模型,该模型集成了标准注意力(SA)和强化特征注意(RFA)模块。这两个模块均采用缩放点积注意力机制来提取时间上下文和空间相关性,并将这些信息融合起来以增强时空表示。在三个基准数据集上的实验表明,SRVP能够在不使用RNN的情况下同时减轻基于RNN的模型中的图像质量下降问题,并达到与无RNN架构相当的预测性能。

URL

https://arxiv.org/abs/2504.08012

PDF

https://arxiv.org/pdf/2504.08012.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot