Paper Reading AI Learner

Quantitative Impact of Label Noise on the Quality of Segmentation of Brain Tumors on MRI scans

2019-09-18 09:48:58
Michał Marcinkiewicz, Grzegorz Mrukwa

Abstract

Over the last few years, deep learning has proven to be a great solution to many problems, such as image or text classification. Recently, deep learning-based solutions have outperformed humans on selected benchmark datasets, yielding a promising future for scientific and real-world applications. Training of deep learning models requires vast amounts of high quality data to achieve such supreme performance. In real-world scenarios, obtaining a large, coherent, and properly labeled dataset is a challenging task. This is especially true in medical applications, where high-quality data and annotations are scarce and the number of expert annotators is limited. In this paper, we investigate the impact of corrupted ground-truth masks on the performance of a neural network for a brain tumor segmentation task. Our findings suggest that a) the performance degrades about 8% less than it could be expected from simulations, b) a neural network learns the simulated biases of annotators, c) biases can be partially mitigated by using an inversely-biased dice loss function.

Abstract (translated)

URL

https://arxiv.org/abs/1909.08959

PDF

https://arxiv.org/pdf/1909.08959.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot