Paper Reading AI Learner

PG-DPIR: An efficient plug-and-play method for high-count Poisson-Gaussian inverse problems

2025-04-14 16:23:15
Maud Biquard, Marie Chabert, Florence Genin, Christophe Latry, Thomas Oberlin

Abstract

Poisson-Gaussian noise describes the noise of various imaging systems thus the need of efficient algorithms for Poisson-Gaussian image restoration. Deep learning methods offer state-of-the-art performance but often require sensor-specific training when used in a supervised setting. A promising alternative is given by plug-and-play (PnP) methods, which consist in learning only a regularization through a denoiser, allowing to restore images from several sources with the same network. This paper introduces PG-DPIR, an efficient PnP method for high-count Poisson-Gaussian inverse problems, adapted from DPIR. While DPIR is designed for white Gaussian noise, a naive adaptation to Poisson-Gaussian noise leads to prohibitively slow algorithms due to the absence of a closed-form proximal operator. To address this, we adapt DPIR for the specificities of Poisson-Gaussian noise and propose in particular an efficient initialization of the gradient descent required for the proximal step that accelerates convergence by several orders of magnitude. Experiments are conducted on satellite image restoration and super-resolution problems. High-resolution realistic Pleiades images are simulated for the experiments, which demonstrate that PG-DPIR achieves state-of-the-art performance with improved efficiency, which seems promising for on-ground satellite processing chains.

Abstract (translated)

泊松-高斯噪声描述了各种成像系统中的噪声特性,因此需要高效的算法来解决泊松-高斯图像恢复问题。深度学习方法提供了最先进的性能,但当在监督设置下使用时通常需要特定传感器的训练。一种有前景的替代方案是由插件播放(PnP)方法提供的,这些方法仅通过去噪器学习正则化项,从而能够利用同一网络从多个来源恢复图像。本文介绍了PG-DPIR,这是一种高效的PnP方法,用于解决高计数泊松-高斯逆问题,基于DPIR进行了改进。虽然DPIR是为白色高斯噪声设计的,但直接将其应用于泊松-高斯噪声会导致算法运行速度极其缓慢,因为缺乏封闭形式的近似算子。为了应对这一挑战,我们针对Poisson-Gaussian噪声的特点对DPIR进行了调整,并特别提出了一种高效的梯度下降初始化方法,用于加速近似步骤中的收敛速度,提高了几个数量级的速度。实验在卫星图像恢复和超分辨率问题上进行。利用高分辨率的现实Pleiades图像模拟了实验数据,结果表明PG-DPIR实现了最先进的性能并提高了效率,这似乎对于地面卫星处理链来说前景广阔。

URL

https://arxiv.org/abs/2504.10375

PDF

https://arxiv.org/pdf/2504.10375.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot