Paper Reading AI Learner

Versatile, Robust, and Explosive Locomotion with Rigid and Articulated Compliant Quadrupeds

2025-04-17 11:20:29
Jiatao Ding, Peiyu Yang, Fabio Boekel, Jens Kober, Wei Pan, Matteo Saveriano, Cosimo Della Santina

Abstract

Achieving versatile and explosive motion with robustness against dynamic uncertainties is a challenging task. Introducing parallel compliance in quadrupedal design is deemed to enhance locomotion performance, which, however, makes the control task even harder. This work aims to address this challenge by proposing a general template model and establishing an efficient motion planning and control pipeline. To start, we propose a reduced-order template model-the dual-legged actuated spring-loaded inverted pendulum with trunk rotation-which explicitly models parallel compliance by decoupling spring effects from active motor actuation. With this template model, versatile acrobatic motions, such as pronking, froggy jumping, and hop-turn, are generated by a dual-layer trajectory optimization, where the singularity-free body rotation representation is taken into consideration. Integrated with a linear singularity-free tracking controller, enhanced quadrupedal locomotion is achieved. Comparisons with the existing template model reveal the improved accuracy and generalization of our model. Hardware experiments with a rigid quadruped and a newly designed compliant quadruped demonstrate that i) the template model enables generating versatile dynamic motion; ii) parallel elasticity enhances explosive motion. For example, the maximal pronking distance, hop-turn yaw angle, and froggy jumping distance increase at least by 25%, 15% and 25%, respectively; iii) parallel elasticity improves the robustness against dynamic uncertainties, including modelling errors and external disturbances. For example, the allowable support surface height variation increases by 100% for robust froggy jumping.

Abstract (translated)

实现具备广泛适应性和爆发力的运动,并且能够抵御动态不确定性,是一项挑战性任务。在四足动物设计中引入并行柔顺性被认为可以提高行走性能,但这却使控制任务变得更加困难。本研究旨在通过提出一个通用模板模型并建立高效的运动规划和控制系统来解决这一问题。 首先,我们提出了一个降阶的模板模型——具有躯干旋转功能的双足驱动弹簧加载倒立摆(Dual-Legged Actuated Spring-Loaded Inverted Pendulum with Trunk Rotation)。该模型明确地通过分离弹簧效应与主动电机驱动作用来建模并行柔顺性。利用这个模板模型,诸如跳跃、蛙跳和转向跃等广泛的杂技动作可以通过双层轨迹优化生成,在此过程中考虑到了无奇点的体旋转表示。 结合线性的无奇点跟踪控制器后,实现了增强型四足动物行走性能。与现有的模板模型相比,我们的模型在准确性和泛化性方面表现出显著改进。通过刚性四足机器人和新设计的柔顺四足机器人的硬件实验发现: 1. 模板模型能够生成多样化的动态运动; 2. 并行弹性增强了爆发力动作的表现能力。例如,最大跳跃距离、转向跃偏航角度及蛙跳距离至少分别增加了25%、15%和25%; 3. 并行弹性提高了对抗动态不确定性(包括建模误差和外部干扰)的鲁棒性。例如,在稳健型蛙跳中允许的支持面高度变化增加了一倍。 这些结果表明,所提出的模板模型及控制策略在提高四足机器人运动性能方面具有显著优势,并为未来的研究提供了坚实的基础。

URL

https://arxiv.org/abs/2504.12854

PDF

https://arxiv.org/pdf/2504.12854.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot