Paper Reading AI Learner

Adaptive Task Space Non-Singular Terminal Super-Twisting Sliding Mode Control of a 7-DOF Robotic Manipulator

2025-04-17 16:11:33
L. Wan (Department of Mechanical Engineering, Dalhousie University, Halifax, NS, Canada), S. Smith (Department of Mechanical Engineering, Dalhousie University, Halifax, NS, Canada, GIPSA-lab CNRS, University of Grenoble Alpes, Grenoble, France), Y. -J. Pan (Department of Mechanical Engineering, Dalhousie University, Halifax, NS, Canada), E. Witrant (Department of Mechanical Engineering, Dalhousie University, Halifax, NS, Canada, GIPSA-lab CNRS, University of Grenoble Alpes, Grenoble, France)

Abstract

This paper presents a new task-space Non-singular Terminal Super-Twisting Sliding Mode (NT-STSM) controller with adaptive gains for robust trajectory tracking of a 7-DOF robotic manipulator. The proposed approach addresses the challenges of chattering, unknown disturbances, and rotational motion tracking, making it suited for high-DOF manipulators in dexterous manipulation tasks. A rigorous boundedness proof is provided, offering gain selection guidelines for practical implementation. Simulations and hardware experiments with external disturbances demonstrate the proposed controller's robust, accurate tracking with reduced control effort under unknown disturbances compared to other NT-STSM and conventional controllers. The results demonstrated that the proposed NT-STSM controller mitigates chattering and instability in complex motions, making it a viable solution for dexterous robotic manipulations and various industrial applications.

Abstract (translated)

本文提出了一种新的任务空间非奇异终端超级扭转滑模(NT-STSM)控制器,该控制器具有自适应增益,适用于7自由度机械臂的鲁棒轨迹跟踪。所提出的方法解决了抖振、未知扰动和旋转运动跟踪等挑战,非常适合于灵巧操作任务中的高自由度机械臂。本文提供了严格的有界性证明,并为实际应用中增益的选择提供了指导原则。通过外部干扰情况下的仿真和硬件实验表明,与其它NT-STSM控制器及传统控制器相比,所提出的控制器在未知扰动条件下能够实现鲁棒、精确的跟踪并减少控制努力。实验结果表明,所提出的NT-STSM控制器有效地减轻了复杂运动中的抖振和不稳定问题,使其成为灵巧机器人操作以及各种工业应用中的一种可行解决方案。

URL

https://arxiv.org/abs/2504.13056

PDF

https://arxiv.org/pdf/2504.13056.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot