Paper Reading AI Learner

Rethinking Temporal Fusion with a Unified Gradient Descent View for 3D Semantic Occupancy Prediction

2025-04-17 14:05:33
Dubing Chen, Huan Zheng, Jin Fang, Xingping Dong, Xianfei Li, Wenlong Liao, Tao He, Pai Peng, Jianbing Shen

Abstract

We present GDFusion, a temporal fusion method for vision-based 3D semantic occupancy prediction (VisionOcc). GDFusion opens up the underexplored aspects of temporal fusion within the VisionOcc framework, focusing on both temporal cues and fusion strategies. It systematically examines the entire VisionOcc pipeline, identifying three fundamental yet previously overlooked temporal cues: scene-level consistency, motion calibration, and geometric complementation. These cues capture diverse facets of temporal evolution and make distinct contributions across various modules in the VisionOcc framework. To effectively fuse temporal signals across heterogeneous representations, we propose a novel fusion strategy by reinterpreting the formulation of vanilla RNNs. This reinterpretation leverages gradient descent on features to unify the integration of diverse temporal information, seamlessly embedding the proposed temporal cues into the network. Extensive experiments on nuScenes demonstrate that GDFusion significantly outperforms established baselines. Notably, on Occ3D benchmark, it achieves 1.4\%-4.8\% mIoU improvements and reduces memory consumption by 27\%-72\%.

Abstract (translated)

我们提出了GDFusion,这是一种用于基于视觉的三维语义占用预测(VisionOcc)的时间融合方法。GDFusion 开拓了在 VisionOcc 框架内未充分探索的时间融合方面,专注于时间线索和融合策略。它系统地审查了整个 VisionOcc 管道,并识别出三个基础但以前被忽视的时间线索:场景级一致性、运动校准和几何补充。这些线索捕捉到时间演变的各个方面,在 VisionOcc 框架的不同模块中做出了独特的贡献。 为了有效融合异构表示中的时序信号,我们提出了一种新的融合策略,通过重新解释标准 RNN 的公式来实现这一点。这种重新解读利用了特征上的梯度下降,以统一不同类型的时序信息的集成,并将提出的时序线索无缝地嵌入到网络中。 在 nuScenes 数据集上进行的广泛实验表明,GDFusion 显著优于现有的基准方法。特别是在 Occ3D 基准测试上,它实现了 1.4%-4.8% 的 mIoU 改进,并减少了 27%-72% 的内存消耗。

URL

https://arxiv.org/abs/2504.12959

PDF

https://arxiv.org/pdf/2504.12959.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot