Paper Reading AI Learner

Using Statistics to Automate Stochastic Optimization

2019-09-21 07:27:48
Hunter Lang, Pengchuan Zhang, Lin Xiao

Abstract

Despite the development of numerous adaptive optimizers, tuning the learning rate of stochastic gradient methods remains a major roadblock to obtaining good practical performance in machine learning. Rather than changing the learning rate at each iteration, we propose an approach that automates the most common hand-tuning heuristic: use a constant learning rate until "progress stops," then drop. We design an explicit statistical test that determines when the dynamics of stochastic gradient descent reach a stationary distribution. This test can be performed easily during training, and when it fires, we decrease the learning rate by a constant multiplicative factor. Our experiments on several deep learning tasks demonstrate that this statistical adaptive stochastic approximation (SASA) method can automatically find good learning rate schedules and match the performance of hand-tuned methods using default settings of its parameters. The statistical testing helps to control the variance of this procedure and improves its robustness.

Abstract (translated)

URL

https://arxiv.org/abs/1909.09785

PDF

https://arxiv.org/pdf/1909.09785.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot