Paper Reading AI Learner

HyperFlow: Gradient-Free Emulation of Few-Shot Fine-Tuning

2025-04-21 03:04:38
Donggyun Kim, Chanwoo Kim, Seunghoon Hong

Abstract

While test-time fine-tuning is beneficial in few-shot learning, the need for multiple backpropagation steps can be prohibitively expensive in real-time or low-resource scenarios. To address this limitation, we propose an approach that emulates gradient descent without computing gradients, enabling efficient test-time adaptation. Specifically, we formulate gradient descent as an Euler discretization of an ordinary differential equation (ODE) and train an auxiliary network to predict the task-conditional drift using only the few-shot support set. The adaptation then reduces to a simple numerical integration (e.g., via the Euler method), which requires only a few forward passes of the auxiliary network -- no gradients or forward passes of the target model are needed. In experiments on cross-domain few-shot classification using the Meta-Dataset and CDFSL benchmarks, our method significantly improves out-of-domain performance over the non-fine-tuned baseline while incurring only 6\% of the memory cost and 0.02\% of the computation time of standard fine-tuning, thus establishing a practical middle ground between direct transfer and fully fine-tuned approaches.

Abstract (translated)

虽然测试时的微调在少量样本学习中是有益的,但在实时或资源受限场景下,需要进行多次反向传播步骤的成本可能过高。为了解决这一限制,我们提出了一种方法,该方法能够在不计算梯度的情况下模拟梯度下降,从而实现高效的测试时适应性调整。具体而言,我们将梯度下降表述为普通微分方程(ODE)的欧拉离散化,并训练一个辅助网络仅使用少量样本支持集来预测任务条件下的漂移。随后的适应过程简化为简单的数值积分(例如通过欧拉方法),这只需要进行几次辅助网络的前向传递——不需要计算梯度或目标模型的前向传递。 在跨域少量样本分类实验中,我们使用了Meta-Dataset和CDFSL基准测试,并且我们的方法显著提高了跨域性能,相比于不进行微调的基础线而言,在仅占用标准微调内存成本6%和0.02%计算时间的情况下实现了这一改进。因此,该方法在直接迁移与完全微调之间建立了一种实用的中间途径。 简言之,这项研究提供了一个有效的方法来优化少量样本学习中的测试时适应性调整过程,在减少资源消耗的同时提高跨域模型性能。

URL

https://arxiv.org/abs/2504.15323

PDF

https://arxiv.org/pdf/2504.15323.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot