Paper Reading AI Learner

Successive Embedding and Classification Loss for Aerial Image Classification

2019-09-24 05:57:53
Jiayun Wang, Patrick Virtue, Stella X. Yu

Abstract

Deep neural networks can be effective means to automatically classify aerial images but is easy to overfit to the training data. It is critical for trained neural networks to be robust to variations that exist between training and test environments. To address the overfitting problem in aerial image classification, we consider the neural network as successive transformations of an input image into embedded feature representations and ultimately into a semantic class label, and train neural networks to optimize image representations in the embedded space in addition to optimizing the final classification score. We demonstrate that networks trained with this dual embedding and classification loss outperform networks with classification loss only. %We also study placing the embedding loss on different network layers. We also find that moving the embedding loss from commonly-used feature space to the classifier space, which is the space just before softmax nonlinearization, leads to the best classification performance for aerial images. Visualizations of the network's embedded representations reveal that the embedding loss encourages greater separation between target class clusters for both training and testing partitions of two aerial image classification benchmark datasets, MSTAR and AID. Our code is publicly available on GitHub.

Abstract (translated)

URL

https://arxiv.org/abs/1712.01511

PDF

https://arxiv.org/pdf/1712.01511.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot