Paper Reading AI Learner

Edge-preserving Image Denoising via Multi-scale Adaptive Statistical Independence Testing

2025-05-02 06:09:32
Ruyu Yan, Da-Qing Zhang

Abstract

Edge detection is crucial in image processing, but existing methods often produce overly detailed edge maps, affecting clarity. Fixed-window statistical testing faces issues like scale mismatch and computational redundancy. To address these, we propose a novel Multi-scale Adaptive Independence Testing-based Edge Detection and Denoising (EDD-MAIT), a Multi-scale Adaptive Statistical Testing-based edge detection and denoising method that integrates a channel attention mechanism with independence testing. A gradient-driven adaptive window strategy adjusts window sizes dynamically, improving detail preservation and noise suppression. EDD-MAIT achieves better robustness, accuracy, and efficiency, outperforming traditional and learning-based methods on BSDS500 and BIPED datasets, with improvements in F-score, MSE, PSNR, and reduced runtime. It also shows robustness against Gaussian noise, generating accurate and clean edge maps in noisy environments.

Abstract (translated)

边缘检测在图像处理中至关重要,但现有方法往往会产生过于详细的边缘图,影响清晰度。固定窗口统计测试面临尺度不匹配和计算冗余等问题。为解决这些问题,我们提出了一种基于多尺度自适应独立性检验的边缘检测与去噪(EDD-MAIT)的新方法。这是一种结合了通道注意力机制和独立性测试的多尺度自适应统计测试基边检测方法。该方法采用梯度驱动的自适应窗口策略动态调整窗口大小,从而提高细节保留能力和噪声抑制能力。 EDD-MAIT在BSDS500和BIPED数据集上表现出更好的鲁棒性、准确性和效率,在F-score、MSE(均方误差)、PSNR(峰值信噪比)等指标上有显著改善,并且运行时间更短。此外,该方法对高斯噪声具有较强的鲁棒性,能够在嘈杂环境中生成精确而干净的边缘图。

URL

https://arxiv.org/abs/2505.01032

PDF

https://arxiv.org/pdf/2505.01032.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot