Paper Reading AI Learner

Towards Multimodal Understanding of Passenger-Vehicle Interactions in Autonomous Vehicles: Intent/Slot Recognition Utilizing Audio-Visual Data

2019-09-20 00:00:41
Eda Okur, Shachi H Kumar, Saurav Sahay, Lama Nachman

Abstract

Understanding passenger intents from spoken interactions and car's vision (both inside and outside the vehicle) are important building blocks towards developing contextual dialog systems for natural interactions in autonomous vehicles (AV). In this study, we continued exploring AMIE (Automated-vehicle Multimodal In-cabin Experience), the in-cabin agent responsible for handling certain multimodal passenger-vehicle interactions. When the passengers give instructions to AMIE, the agent should parse such commands properly considering available three modalities (language/text, audio, video) and trigger the appropriate functionality of the AV system. We had collected a multimodal in-cabin dataset with multi-turn dialogues between the passengers and AMIE using a Wizard-of-Oz scheme via realistic scavenger hunt game. In our previous explorations, we experimented with various RNN-based models to detect utterance-level intents (set destination, change route, go faster, go slower, stop, park, pull over, drop off, open door, and others) along with intent keywords and relevant slots (location, position/direction, object, gesture/gaze, time-guidance, person) associated with the action to be performed in our AV scenarios. In this recent work, we propose to discuss the benefits of multimodal understanding of in-cabin utterances by incorporating verbal/language input (text and speech embeddings) together with the non-verbal/acoustic and visual input from inside and outside the vehicle (i.e., passenger gestures and gaze from in-cabin video stream, referred objects outside of the vehicle from the road view camera stream). Our experimental results outperformed text-only baselines and with multimodality, we achieved improved performances for utterance-level intent detection and slot filling.

Abstract (translated)

URL

https://arxiv.org/abs/1909.13714

PDF

https://arxiv.org/pdf/1909.13714.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot