Paper Reading AI Learner

Beyond Correlation: Towards Causal Large Language Model Agents in Biomedicine

2025-05-22 17:52:59
Adib Bazgir, Amir Habibdoust Lafmajani, Yuwen Zhang

Abstract

Large Language Models (LLMs) show promise in biomedicine but lack true causal understanding, relying instead on correlations. This paper envisions causal LLM agents that integrate multimodal data (text, images, genomics, etc.) and perform intervention-based reasoning to infer cause-and-effect. Addressing this requires overcoming key challenges: designing safe, controllable agentic frameworks; developing rigorous benchmarks for causal evaluation; integrating heterogeneous data sources; and synergistically combining LLMs with structured knowledge (KGs) and formal causal inference tools. Such agents could unlock transformative opportunities, including accelerating drug discovery through automated hypothesis generation and simulation, enabling personalized medicine through patient-specific causal models. This research agenda aims to foster interdisciplinary efforts, bridging causal concepts and foundation models to develop reliable AI partners for biomedical progress.

Abstract (translated)

大型语言模型(LLMs)在生物医学领域展现出巨大的潜力,但它们缺乏真正的因果理解能力,而是依赖于相关性。本文构想了具备因果推理能力的多模态数据集成型代理(包括文本、图像、基因组学等),通过基于干预的推理来推断因果关系。实现这一目标需要克服几个关键挑战:设计安全且可控的代理框架;开发严谨的基准测试以评估因果模型;整合异构的数据源;以及将大型语言模型与结构化知识图谱(KGs)和正式因果推理工具协同结合。 这样的代理能够开启一系列变革性机会,包括通过自动化假设生成和模拟加速药物发现,通过患者特定的因果模型实现个性化医疗。这一研究议程旨在促进跨学科合作,弥合因果概念与基础模型之间的差距,并开发出可靠的AI伙伴以推动生物医学领域的进步。

URL

https://arxiv.org/abs/2505.16982

PDF

https://arxiv.org/pdf/2505.16982.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot