Paper Reading AI Learner

MASLab: A Unified and Comprehensive Codebase for LLM-based Multi-Agent Systems

2025-05-22 17:54:38
Rui Ye, Keduan Huang, Qimin Wu, Yuzhu Cai, Tian Jin, Xianghe Pang, Xiangrui Liu, Jiaqi Su, Chen Qian, Bohan Tang, Kaiqu Liang, Jiaao Chen, Yue Hu, Zhenfei Yin, Rongye Shi, Bo An, Yang Gao, Wenjun Wu, Lei Bai, Siheng Chen

Abstract

LLM-based multi-agent systems (MAS) have demonstrated significant potential in enhancing single LLMs to address complex and diverse tasks in practical applications. Despite considerable advancements, the field lacks a unified codebase that consolidates existing methods, resulting in redundant re-implementation efforts, unfair comparisons, and high entry barriers for researchers. To address these challenges, we introduce MASLab, a unified, comprehensive, and research-friendly codebase for LLM-based MAS. (1) MASLab integrates over 20 established methods across multiple domains, each rigorously validated by comparing step-by-step outputs with its official implementation. (2) MASLab provides a unified environment with various benchmarks for fair comparisons among methods, ensuring consistent inputs and standardized evaluation protocols. (3) MASLab implements methods within a shared streamlined structure, lowering the barriers for understanding and extension. Building on MASLab, we conduct extensive experiments covering 10+ benchmarks and 8 models, offering researchers a clear and comprehensive view of the current landscape of MAS methods. MASLab will continue to evolve, tracking the latest developments in the field, and invite contributions from the broader open-source community.

Abstract (translated)

基于大型语言模型(LLM)的多智能体系统(MAS)在实际应用中展现出提升单一LLM能力以应对复杂和多样化任务的巨大潜力。尽管取得了一定进展,该领域仍缺乏一个统一的代码库来整合现有方法,这导致了重复实现的努力、不公平的比较以及研究人员较高的入门门槛。为解决这些问题,我们引入了MASLab——一个统一、全面且适合研究者使用的基于LLM的MAS代码库。 1. MASLab集成了超过20种跨多个领域的成熟方法,并通过与官方实现逐步骤输出对比的方式严谨验证每一种方法。 2. MASLab提供了一个统一的环境,包括多种基准测试以进行公平的方法比较,确保一致的输入和标准化的评估协议。 3. MASLab在共享的精简结构中实现了各种方法,降低了理解和扩展的门槛。基于MASLab,我们进行了广泛的实验,覆盖了10多个基准测试和8种模型,为研究人员提供了对当前MAS方法领域清晰全面的观点。 未来,MASLab将继续发展,跟踪该领域的最新进展,并邀请更广泛开源社区的贡献。

URL

https://arxiv.org/abs/2505.16988

PDF

https://arxiv.org/pdf/2505.16988.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot