Paper Reading AI Learner

Tropical Geometry Based Edge Detection Using Min-Plus and Max-Plus Algebra

2025-05-24 10:19:27
Shivam Kumar Jha S, Jaya NN Iyer

Abstract

This paper proposes a tropical geometry-based edge detection framework that reformulates convolution and gradient computations using min-plus and max-plus algebra. The tropical formulation emphasizes dominant intensity variations, contributing to sharper and more continuous edge representations. Three variants are explored: an adaptive threshold-based method, a multi-kernel min-plus method, and a max-plus method emphasizing structural continuity. The framework integrates multi-scale processing, Hessian filtering, and wavelet shrinkage to enhance edge transitions while maintaining computational efficiency. Experiments on MATLAB built-in grayscale and color images suggest that tropical formulations integrated with classical operators, such as Canny and LoG, can improve boundary detection in low-contrast and textured regions. Quantitative evaluation using standard edge metrics indicates favorable edge clarity and structural coherence. These results highlight the potential of tropical algebra as a scalable and noise-aware formulation for edge detection in practical image analysis tasks.

Abstract (translated)

本文提出了一种基于热带几何的边缘检测框架,该框架使用极小-极大加法代数(min-plus和max-plus)重新表述卷积和梯度计算。这种热带公式化强调了主要强度变化,有助于获得更清晰、更连续的边缘表示。文中探讨了三种变体:自适应阈值方法、多核极小-极大加法方法以及着重于结构连续性的极大-加法方法。该框架集成了多尺度处理、赫斯(Hessian)滤波和小波收缩,以增强边缘过渡并保持计算效率。在MATLAB内置的灰度和彩色图像上进行的实验表明,与经典算子如Canny和LoG集成的传统边界的热带公式化方法可以在低对比度和纹理区域提高边界检测能力。使用标准边缘指标进行的定量评估显示了有利的边缘清晰度和结构连贯性。这些结果突显了热带代数作为边缘检测实用图像分析任务中可扩展且对噪声敏感的表述方案的潜力。

URL

https://arxiv.org/abs/2505.18625

PDF

https://arxiv.org/pdf/2505.18625.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot