Paper Reading AI Learner

A Paired Sparse Representation Model for Robust Face Recognition from a Single Sample

2019-10-05 01:58:45
Fania Mokhayeri, Eric Granger

Abstract

Sparse representation-based classification (SRC) has been shown to achieve a high level of accuracy in face recognition (FR). However, matching faces captured in unconstrained video against a gallery with a single reference facial still per individual typically yields low accuracy. For improved robustness to intra-class variations, SRC techniques for FR have recently been extended to incorporate variational information from an external generic set into an auxiliary dictionary. Despite their success in handling linear variations, non-linear variations (e.g., pose and expressions) between probe and reference facial images cannot be accurately reconstructed with a linear combination of images in the gallery and auxiliary dictionaries because they do not share the same type of variations. In order to account for non-linear variations due to pose, a paired sparse representation model is introduced allowing for joint use of variational information and synthetic face images. The proposed model, called synthetic plus variational model, reconstructs a probe image by jointly using (1) a variational dictionary and (2) a gallery dictionary augmented with a set of synthetic images generated over a wide diversity of pose angles. The augmented gallery dictionary is then encouraged to pair the same sparsity pattern with the variational dictionary for similar pose angles by solving a newly formulated simultaneous sparsity-based optimization problem. Experimental results obtained on Chokepoint and COX-S2V datasets, using different face representations, indicate that the proposed approach can outperform state-of-the-art SRC-based methods for still-to-video FR with a single sample per person.

Abstract (translated)

URL

https://arxiv.org/abs/1910.02192

PDF

https://arxiv.org/pdf/1910.02192.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot