Paper Reading AI Learner

VAU-R1: Advancing Video Anomaly Understanding via Reinforcement Fine-Tuning

2025-05-29 14:48:10
Liyun Zhu, Qixiang Chen, Xi Shen, Xiaodong Cun

Abstract

Video Anomaly Understanding (VAU) is essential for applications such as smart cities, security surveillance, and disaster alert systems, yet remains challenging due to its demand for fine-grained spatio-temporal perception and robust reasoning under ambiguity. Despite advances in anomaly detection, existing methods often lack interpretability and struggle to capture the causal and contextual aspects of abnormal events. This limitation is further compounded by the absence of comprehensive benchmarks for evaluating reasoning ability in anomaly scenarios. To address both challenges, we introduce VAU-R1, a data-efficient framework built upon Multimodal Large Language Models (MLLMs), which enhances anomaly reasoning through Reinforcement Fine-Tuning (RFT). Besides, we propose VAU-Bench, the first Chain-of-Thought benchmark tailored for video anomaly reasoning, featuring multiple-choice QA, detailed rationales, temporal annotations, and descriptive captions. Empirical results show that VAU-R1 significantly improves question answering accuracy, temporal grounding, and reasoning coherence across diverse contexts. Together, our method and benchmark establish a strong foundation for interpretable and reasoning-aware video anomaly understanding. Our code is available at this https URL.

Abstract (translated)

视频异常理解(VAU)对于智能城市、安全监控和灾害预警系统等应用至关重要,但由于其对细粒度时空感知以及在模糊条件下进行稳健推理的需求,这项任务仍然具有挑战性。尽管在异常检测方面有所进步,现有的方法通常缺乏可解释性,并且难以捕捉异常事件的因果关系和上下文背景。这种局限性还因评估异常场景中推理能力的全面基准测试缺失而进一步加剧。为了解决这些挑战,我们引入了VAU-R1,这是一个基于多模态大型语言模型(MLLM)的数据高效框架,通过强化微调(RFT)来增强异常推理。此外,我们提出了VAU-Bench,这是第一个针对视频异常推理的Chain-of-Thought基准测试,其特点包括多项选择题、详细的理由说明、时间标注和描述性字幕。 实证结果显示,VAU-R1在各种上下文中显著提高了问题回答准确率、时间定位精度以及推理一致性。我们的方法与基准测试共同为可解释性和推理意识的视频异常理解奠定了坚实的基础。我们的代码可在提供的链接中获取。

URL

https://arxiv.org/abs/2505.23504

PDF

https://arxiv.org/pdf/2505.23504.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot