Paper Reading AI Learner

Towards a Generalizable Bimanual Foundation Policy via Flow-based Video Prediction

2025-05-30 03:01:21
Chenyou Fan, Fangzheng Yan, Chenjia Bai, Jiepeng Wang, Chi Zhang, Zhen Wang, Xuelong Li

Abstract

Learning a generalizable bimanual manipulation policy is extremely challenging for embodied agents due to the large action space and the need for coordinated arm movements. Existing approaches rely on Vision-Language-Action (VLA) models to acquire bimanual policies. However, transferring knowledge from single-arm datasets or pre-trained VLA models often fails to generalize effectively, primarily due to the scarcity of bimanual data and the fundamental differences between single-arm and bimanual manipulation. In this paper, we propose a novel bimanual foundation policy by fine-tuning the leading text-to-video models to predict robot trajectories and training a lightweight diffusion policy for action generation. Given the lack of embodied knowledge in text-to-video models, we introduce a two-stage paradigm that fine-tunes independent text-to-flow and flow-to-video models derived from a pre-trained text-to-video model. Specifically, optical flow serves as an intermediate variable, providing a concise representation of subtle movements between images. The text-to-flow model predicts optical flow to concretize the intent of language instructions, and the flow-to-video model leverages this flow for fine-grained video prediction. Our method mitigates the ambiguity of language in single-stage text-to-video prediction and significantly reduces the robot-data requirement by avoiding direct use of low-level actions. In experiments, we collect high-quality manipulation data for real dual-arm robot, and the results of simulation and real-world experiments demonstrate the effectiveness of our method.

Abstract (translated)

学习一种通用的双臂操作策略对于具身代理来说极为具有挑战性,原因在于庞大的动作空间以及需要协调的手臂运动。现有的方法依赖于视觉-语言-行动(VLA)模型来获取双臂策略。然而,从单臂数据集或预训练的VLA模型中转移知识往往难以有效泛化,主要是由于双臂数据稀缺和单臂与双臂操作之间存在本质差异所致。 在本文中,我们提出了一种新颖的双臂基础策略,通过微调领先的文本到视频模型来预测机器人轨迹,并训练一个轻量级扩散策略用于动作生成。鉴于文本到视频模型缺乏具身知识,我们引入了一个两阶段范式,以预训练的文本到视频模型为基础,对独立的文本到流(flow)和流到视频模型进行微调。具体来说,光学流动充当中间变量,提供图像之间细微运动的简洁表示。文本到流模型预测光学流动,将语言指令的具体意图形式化;而流到视频模型则利用此流动实现精细的视频预测。我们的方法减轻了一步式文本到视频预测中语言模糊性的问题,并通过避免直接使用低级动作显著减少了对机器人数据的需求。 在实验中,我们为实际的双臂机器人收集了高质量的操作数据,模拟和真实世界实验的结果展示了该方法的有效性。

URL

https://arxiv.org/abs/2505.24156

PDF

https://arxiv.org/pdf/2505.24156.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot