Paper Reading AI Learner

UniPre3D: Unified Pre-training of 3D Point Cloud Models with Cross-Modal Gaussian Splatting

2025-06-11 17:23:21
Ziyi Wang, Yanran Zhang, Jie Zhou, Jiwen Lu

Abstract

The scale diversity of point cloud data presents significant challenges in developing unified representation learning techniques for 3D vision. Currently, there are few unified 3D models, and no existing pre-training method is equally effective for both object- and scene-level point clouds. In this paper, we introduce UniPre3D, the first unified pre-training method that can be seamlessly applied to point clouds of any scale and 3D models of any architecture. Our approach predicts Gaussian primitives as the pre-training task and employs differentiable Gaussian splatting to render images, enabling precise pixel-level supervision and end-to-end optimization. To further regulate the complexity of the pre-training task and direct the model's focus toward geometric structures, we integrate 2D features from pre-trained image models to incorporate well-established texture knowledge. We validate the universal effectiveness of our proposed method through extensive experiments across a variety of object- and scene-level tasks, using diverse point cloud models as backbones. Code is available at this https URL.

Abstract (translated)

点云数据的尺度多样性为三维视觉中的统一表示学习技术的发展带来了显著挑战。目前,很少有通用的3D模型存在,并且没有现有的预训练方法能够同时有效地应用于对象级和场景级点云。在本文中,我们介绍了UniPre3D,这是首个可以无缝应用于任何规模点云及任意架构3D模型的统一预训练方法。我们的方法将预测高斯基元作为预训练任务,并采用可微分高斯渲染技术来生成图像,从而实现精确的像素级监督和端到端优化。为了进一步调节预训练任务的复杂度并引导模型关注几何结构,我们整合了来自预先训练好的图像模型的2D特征,以纳入已确立的良好纹理知识。我们通过广泛的实验验证了所提出方法在各种对象级和场景级任务中的通用有效性,并使用多种点云模型作为骨干网络进行测试。代码可在提供的链接中获取。

URL

https://arxiv.org/abs/2506.09952

PDF

https://arxiv.org/pdf/2506.09952.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot