Paper Reading AI Learner

Discovering Hierarchical Latent Capabilities of Language Models via Causal Representation Learning

2025-06-12 06:07:42
Jikai Jin, Vasilis Syrgkanis, Sham Kakade, Hanlin Zhang

Abstract

Faithful evaluation of language model capabilities is crucial for deriving actionable insights that can inform model development. However, rigorous causal evaluations in this domain face significant methodological challenges, including complex confounding effects and prohibitive computational costs associated with extensive retraining. To tackle these challenges, we propose a causal representation learning framework wherein observed benchmark performance is modeled as a linear transformation of a few latent capability factors. Crucially, these latent factors are identified as causally interrelated after appropriately controlling for the base model as a common confounder. Applying this approach to a comprehensive dataset encompassing over 1500 models evaluated across six benchmarks from the Open LLM Leaderboard, we identify a concise three-node linear causal structure that reliably explains the observed performance variations. Further interpretation of this causal structure provides substantial scientific insights beyond simple numerical rankings: specifically, we reveal a clear causal direction starting from general problem-solving capabilities, advancing through instruction-following proficiency, and culminating in mathematical reasoning ability. Our results underscore the essential role of carefully controlling base model variations during evaluation, a step critical to accurately uncovering the underlying causal relationships among latent model capabilities.

Abstract (translated)

对语言模型能力进行忠实的评估对于获得能够指导模型开发的实际见解至关重要。然而,在这一领域中,严格的因果评价面临重大的方法论挑战,包括复杂的混杂效应和与广泛再训练相关的高昂计算成本。为了应对这些挑战,我们提出了一种因果表示学习框架,在该框架下,观察到的基准性能被建模为少数潜在能力因素的线性变换。关键在于,在适当控制作为公共混淆变量的基础模型之后,识别出这些潜在因素之间存在因果关系。 我们将这种方法应用于一个包含超过1500个模型的综合数据集上,这些模型在开放LLM排行榜上的六个基准测试中进行了评估。我们确定了一个简洁的三节点线性因果结构,该结构能够可靠地解释观察到的表现变化。进一步解读这种因果结构提供了超越简单数值排名的大量科学见解:具体来说,我们揭示了一种清晰的因果方向,从一般问题解决能力开始,通过指令遵循熟练度,最终达到数学推理能力。 我们的结果强调了在评估过程中仔细控制基础模型差异的重要作用,这是准确发现潜在模型能力之间因果关系的关键步骤。

URL

https://arxiv.org/abs/2506.10378

PDF

https://arxiv.org/pdf/2506.10378.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot