Paper Reading AI Learner

Estimating localized complexity of white-matter wiring with GANs

2019-10-02 16:45:32
Haraldur T. Hallgrimsson, Richika Sharan, Scott T. Grafton, Ambuj K. Singh

Abstract

In-vivo examination of the physical connectivity of axonal projections through the white matter of the human brain is made possible by diffusion weighted magnetic resonance imaging (dMRI) Analysis of dMRI commonly considers derived scalar metrics such as fractional anisotrophy as proxies for "white matter integrity," and differences of such measures have been observed as significantly correlating with various neurological diagnosis and clinical measures such as executive function, presence of multiple sclerosis, and genetic similarity. The analysis of such voxel measures is confounded in areas of more complicated fiber wiring due to crossing, kissing, and dispersing fibers. Recently, Volz et al. introduced a simple probabilistic measure of the count of distinct fiber populations within a voxel, which was shown to reduce variance in group comparisons. We propose a complementary measure that considers the complexity of a voxel in context of its local region, with an aim to quantify the localized wiring complexity of every part of white matter. This allows, for example, identification of particularly ambiguous regions of the brain for tractographic approaches of modeling global wiring connectivity. Our method builds on recent advances in image inpainting, in which the task is to plausibly fill in a missing region of an image. Our proposed method builds on a Bayesian estimate of heteroscedastic aleatoric uncertainty of a region of white matter by inpainting it from its context. We define the localized wiring complexity of white matter as how accurately and confidently a well-trained model can predict the missing patch. In our results, we observe low aleatoric uncertainty along major neuronal pathways which increases at junctions and towards cortex boundaries. This directly quantifies the difficulty of lesion inpainting of dMRI images at all parts of white matter.

Abstract (translated)

URL

https://arxiv.org/abs/1910.04868

PDF

https://arxiv.org/pdf/1910.04868.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot