Paper Reading AI Learner

How Visual Representations Map to Language Feature Space in Multimodal LLMs

2025-06-13 17:34:05
Constantin Venhoff, Ashkan Khakzar, Sonia Joseph, Philip Torr, Neel Nanda

Abstract

Effective multimodal reasoning depends on the alignment of visual and linguistic representations, yet the mechanisms by which vision-language models (VLMs) achieve this alignment remain poorly understood. We introduce a methodological framework that deliberately maintains a frozen large language model (LLM) and a frozen vision transformer (ViT), connected solely by training a linear adapter during visual instruction tuning. This design is fundamental to our approach: by keeping the language model frozen, we ensure it maintains its original language representations without adaptation to visual data. Consequently, the linear adapter must map visual features directly into the LLM's existing representational space rather than allowing the language model to develop specialized visual understanding through fine-tuning. Our experimental design uniquely enables the use of pre-trained sparse autoencoders (SAEs) of the LLM as analytical probes. These SAEs remain perfectly aligned with the unchanged language model and serve as a snapshot of the learned language feature-representations. Through systematic analysis of SAE reconstruction error, sparsity patterns, and feature SAE descriptions, we reveal the layer-wise progression through which visual representations gradually align with language feature representations, converging in middle-to-later layers. This suggests a fundamental misalignment between ViT outputs and early LLM layers, raising important questions about whether current adapter-based architectures optimally facilitate cross-modal representation learning.

Abstract (translated)

有效的多模态推理依赖于视觉和语言表示的对齐,然而,视觉-语言模型(VLMs)如何实现这种对齐的机制仍然不甚明了。我们引入了一种方法论框架,在该框架中特意保持大规模语言模型(LLM)和视觉变压器(ViT)冻结状态,并仅通过训练线性适配器在视觉指令微调过程中进行连接。这一设计是我们的方法的基础:通过保持语言模型冻结,确保它保留其原有的语言表示而不适应于视觉数据的调整。因此,线性适配器必须将视觉特征直接映射到LLM已有的表示空间中,而不是允许语言模型通过微调发展专门的视觉理解。 我们实验设计的独特之处在于能够使用预训练的稀疏自编码器(SAEs)作为分析探针,这些SAE与未改变的语言模型完全对齐,并且反映了学习到的语言特征表示。通过对SAE重构误差、稀疏模式和特征SAE描述进行系统的分析,我们揭示了视觉表征如何逐层进展,逐渐与语言特征表示对齐,并在中后期层级收敛。这表明ViT输出与早期LLM层之间存在基本不对齐的问题,引发了关于当前基于适配器的架构是否能有效促进跨模态表示学习的重要问题。

URL

https://arxiv.org/abs/2506.11976

PDF

https://arxiv.org/pdf/2506.11976.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot