Paper Reading AI Learner

Capsule and convolutional neural network-based SAR ship classification in Sentinel-1 data

2019-10-11 20:32:02
Leonardo De Laurentiis, Andrea Pomente, Fabio Del Frate, Giovanni Schiavon

Abstract

Synthetic Aperture Radar (SAR) constitutes a fundamental asset for wide-areas monitoring with high-resolution requirements. The first SAR sensors have given rise to coarse coastal and maritime monitoring applications, including oil spill, ship and ice floes detection. With the upgrade to very high-resolution sensors in the recent years, with relatively new SAR missions such as Sentinel-1, a great deal of data providing a stronger information content has been released, enabling more refined studies on general targets features and thus permitting complex classifications, as for ship classification, which has become increasingly relevant given the growing need for coastal surveillance in commercial and military segments. In the last decade, several works focused on this topic have been presented, generally based on radiometric features processing; furthermore, in the very recent years a significant amount of research works have focused on emerging deep learning techniques, in particular on Convolutional Neural Networks (CNN). Recently Capsule Neural Networks (CapsNets) have been presented, demonstrating a notable improvement in capturing the properties of given entities, improving the use of spatial informations, in particular of spatial dependence between features, a severely lacking feature in CNNs. In fact, CNNs pooling operations have been criticized for losing spatial relations, thus special capsules, along with a new iterative routing-by-agreement mechanism, have been proposed. In this work a comparison between Capsule and CNNs potential in the ship classification application domain is shown, by leveraging the OpenSARShip, a SAR Sentinel-1 ship chips dataset; in particular, a performance comparison between capsule and various convolutional architectures is built, demonstrating better performances of CapsNet in classifying ships within a small dataset.

Abstract (translated)

URL

https://arxiv.org/abs/1910.05401

PDF

https://arxiv.org/pdf/1910.05401.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot