Paper Reading AI Learner

Evaluation Should Not Ignore Variation: On the Impact of Reference Set Choice on Summarization Metrics

2025-06-17 09:17:41
Silvia Casola, Yang Janet Liu, Siyao Peng, Oliver Kraus, Albert Gatt, Barbara Plank

Abstract

Human language production exhibits remarkable richness and variation, reflecting diverse communication styles and intents. However, this variation is often overlooked in summarization evaluation. While having multiple reference summaries is known to improve correlation with human judgments, the impact of using different reference sets on reference-based metrics has not been systematically investigated. This work examines the sensitivity of widely used reference-based metrics in relation to the choice of reference sets, analyzing three diverse multi-reference summarization datasets: SummEval, GUMSum, and DUC2004. We demonstrate that many popular metrics exhibit significant instability. This instability is particularly concerning for n-gram-based metrics like ROUGE, where model rankings vary depending on the reference sets, undermining the reliability of model comparisons. We also collect human judgments on LLM outputs for genre-diverse data and examine their correlation with metrics to supplement existing findings beyond newswire summaries, finding weak-to-no correlation. Taken together, we recommend incorporating reference set variation into summarization evaluation to enhance consistency alongside correlation with human judgments, especially when evaluating LLMs.

Abstract (translated)

人类语言生成表现出丰富性和多样性,反映了各种不同的沟通风格和意图。然而,在摘要评估中,这种变异性往往被忽视了。尽管已知使用多个参考摘要可以提高与人工判断的相关性,但不同参考集对基于参考的指标的影响尚未进行系统的调查研究。这项工作考察了广泛使用的基于参考的度量标准在选择参考集合时的敏感性,并分析了三个多样化的多参考摘要数据集:SummEval、GUMSum 和 DUC2004。我们展示了许多流行指标表现出显著的不稳定性。这种不稳定性尤其令人担忧,特别是在基于 n-gram 的指标(如 ROUGE)中,模型排名会根据参考集合的不同而变化,从而损害了对模型比较的可靠性。此外,我们在各类别不同的数据上收集了大型语言模型输出的人工判断,并考察这些人工判断与指标的相关性,以补充现有研究并超越新闻摘要的研究范围,发现相关性很弱甚至没有相关性。综合来看,我们建议在总结评估中纳入参考集的变化,以增强一致性以及与人类判断的相关性,尤其是在评估大型语言模型时。

URL

https://arxiv.org/abs/2506.14335

PDF

https://arxiv.org/pdf/2506.14335.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot