Paper Reading AI Learner

Investigation of Zero-shot Text-to-Speech Models for Enhancing Short-Utterance Speaker Verification

2025-06-17 06:29:58
Yiyang Zhao, Shuai Wang, Guangzhi Sun, Zehua Chen, Chao Zhang, Mingxing Xu, Thomas Fang Zheng

Abstract

Short-utterance speaker verification presents significant challenges due to the limited information in brief speech segments, which can undermine accuracy and reliability. Recently, zero-shot text-to-speech (ZS-TTS) systems have made considerable progress in preserving speaker identity. In this study, we explore, for the first time, the use of ZS-TTS systems for test-time data augmentation for speaker verification. We evaluate three state-of-the-art pre-trained ZS-TTS systems, NatureSpeech 3, CosyVoice, and MaskGCT, on the VoxCeleb 1 dataset. Our experimental results show that combining real and synthetic speech samples leads to 10%-16% relative equal error rate (EER) reductions across all durations, with particularly notable improvements for short utterances, all without retraining any existing systems. However, our analysis reveals that longer synthetic speech does not yield the same benefits as longer real speech in reducing EERs. These findings highlight the potential and challenges of using ZS-TTS for test-time speaker verification, offering insights for future research.

Abstract (translated)

简短语音的说话人验证由于在短暂语音片段中包含的信息量有限,面临着显著挑战,这可能会削弱其准确性和可靠性。最近,零样本文本到语音(ZS-TTS)系统在保持说话人身份方面取得了重大进展。在这项研究中,我们首次探讨了将ZS-TTS系统用于测试时数据增强以进行说话人验证的潜力。我们在VoxCeleb 1数据集上评估了三个最先进的预训练ZS-TTS系统:NatureSpeech 3、CosyVoice和MaskGCT。实验结果显示,在所有持续时间下,结合真实语音样本与合成语音样本可以实现10%-16%相对等错误率(EER)的降低,尤其是对于简短语句效果更为显著,并且无需重新训练任何现有系统即可达到这一结果。然而,我们的分析还揭示了一个事实:较长的合成语音并未像真实的长语音那样在减少EER方面带来同样的好处。这些发现强调了使用ZS-TTS进行测试时说话人验证的潜力及其面临的挑战,为未来的研究提供了宝贵的见解。

URL

https://arxiv.org/abs/2506.14226

PDF

https://arxiv.org/pdf/2506.14226.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot