Paper Reading AI Learner

Exploring Non-contrastive Self-supervised Representation Learning for Image-based Profiling

2025-06-17 07:25:57
Siran Dai, Qianqian Xu, Peisong Wen, Yang Liu, Qingming Huang

Abstract

Image-based cell profiling aims to create informative representations of cell images. This technique is critical in drug discovery and has greatly advanced with recent improvements in computer vision. Inspired by recent developments in non-contrastive Self-Supervised Learning (SSL), this paper provides an initial exploration into training a generalizable feature extractor for cell images using such methods. However, there are two major challenges: 1) There is a large difference between the distributions of cell images and natural images, causing the view-generation process in existing SSL methods to fail; and 2) Unlike typical scenarios where each representation is based on a single image, cell profiling often involves multiple input images, making it difficult to effectively combine all available information. To overcome these challenges, we propose SSLProfiler, a non-contrastive SSL framework specifically designed for cell profiling. We introduce specialized data augmentation and representation post-processing methods tailored to cell images, which effectively address the issues mentioned above and result in a robust feature extractor. With these improvements, SSLProfiler won the Cell Line Transferability challenge at CVPR 2025.

Abstract (translated)

基于图像的细胞分析旨在创建具有信息量的细胞图像表示。这一技术在药物发现中至关重要,并且随着计算机视觉领域的近期进展得到了显著提升。受最近非对比自监督学习(SSL)发展的启发,本文初步探索了使用此类方法训练适用于细胞图像的一般化特征提取器的可能性。然而,存在两大挑战:1) 细胞图像与自然图像的分布差异很大,导致现有SSL方法中的视图生成过程失效;2) 与其他场景不同的是,在典型的场景中每个表示基于单一图像,而细胞分析通常涉及多张输入图像,这使得有效整合所有可用信息变得困难。为克服这些挑战,我们提出了一种专门针对细胞分析的非对比自监督学习框架——SSLProfiler。我们引入了专用于细胞图像的数据增强和表征后处理方法,有效地解决了上述问题,并生成了一个稳健的特征提取器。凭借这些改进,SSLProfiler在CVPR 2025的Cell Line Transferability挑战赛中胜出。

URL

https://arxiv.org/abs/2506.14265

PDF

https://arxiv.org/pdf/2506.14265.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot