Paper Reading AI Learner

The AI Policy Module: Developing Computer Science Student Competency in AI Ethics and Policy

2025-06-18 17:09:58
James Weichert, Daniel Dunlap, Mohammed Farghally, Hoda Eldardiry

Abstract

As artificial intelligence (AI) further embeds itself into many settings across personal and professional contexts, increasing attention must be paid not only to AI ethics, but also to the governance and regulation of AI technologies through AI policy. However, the prevailing post-secondary computing curriculum is currently ill-equipped to prepare future AI practitioners to confront increasing demands to implement abstract ethical principles and normative policy preferences into the design and development of AI systems. We believe that familiarity with the 'AI policy landscape' and the ability to translate ethical principles to practices will in the future constitute an important responsibility for even the most technically-focused AI engineers. Toward preparing current computer science (CS) students for these new expectations, we developed an AI Policy Module to introduce discussions of AI policy into the CS curriculum. Building on a successful pilot in fall 2024, in this innovative practice full paper we present an updated and expanded version of the module, including a technical assignment on "AI regulation". We present the findings from our pilot of the AI Policy Module 2.0, evaluating student attitudes towards AI ethics and policy through pre- and post-module surveys. Following the module, students reported increased concern about the ethical impacts of AI technologies while also expressing greater confidence in their abilities to engage in discussions about AI regulation. Finally, we highlight the AI Regulation Assignment as an effective and engaging tool for exploring the limits of AI alignment and emphasizing the role of 'policy' in addressing ethical challenges.

Abstract (translated)

随着人工智能(AI)在个人和专业环境中不断嵌入各种场景,不仅需要关注AI伦理问题,还需要通过AI政策来治理和监管AI技术。然而,现有的高等教育计算机课程目前无法为未来的AI从业者准备应对将抽象的伦理原则和规范性政策偏好融入AI系统设计与开发中的日益增长的需求。我们认为,熟悉“AI政策格局”并能够将伦理原则转化为实践在未来将成为即使是专注于技术的AI工程师的重要职责之一。为了使当前的计算机科学(CS)学生为这些新的期望做好准备,我们开发了一个AI政策模块,以在CS课程中引入关于AI政策的讨论。基于2024年秋季成功的试点项目,在这篇创新实践中论文中,我们介绍了该模块更新和扩展版本,包括一个名为“AI监管”的技术任务。 我们在本文中展示了对AI政策模块2.0试行版的研究成果,并通过预调查和后测来评估学生对于AI伦理与政策的态度。在完成模块学习之后,学生们报告说他们更加关注AI技术的伦理影响,同时也在讨论AI监管方面表达了更大的自信。最后,我们强调了“AI监管任务”作为探索AI对齐限制的有效且引人入胜的方法,并突出了“政策”在应对道德挑战中的作用。 这项工作表明,在计算机科学课程中纳入关于AI政策和伦理的教学模块对于培养未来AI专业人员的能力至关重要,这些能力包括理解并应用有关治理和监管的策略,以促进技术发展的同时保障社会福祉。

URL

https://arxiv.org/abs/2506.15639

PDF

https://arxiv.org/pdf/2506.15639.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot