Paper Reading AI Learner

Baltimore Atlas: FreqWeaver Adapter for Semi-supervised Ultra-high Spatial Resolution Land Cover Classification

2025-06-18 15:41:29
Junhao Wu, Aboagye-Ntow Stephen, Chuyuan Wang, Gang Chen, Xin Huang

Abstract

Ultra-high Spatial Resolution Land Cover Classification is essential for fine-grained land cover analysis, yet it remains challenging due to the high cost of pixel-level annotations, significant scale variation, and the limited adaptability of large-scale vision models. Existing methods typically focus on 1-meter spatial resolution imagery and rely heavily on annotated data, whereas practical applications often require processing higher-resolution imagery under weak supervision. To address this, we propose a parameter-efficient semi-supervised segmentation framework for 0.3 m spatial resolution imagery, which leverages the knowledge of SAM2 and introduces a remote sensing-specific FreqWeaver Adapter to enhance fine-grained detail modeling while maintaining a lightweight design at only 5.96% of the total model parameters. By effectively leveraging unlabeled data and maintaining minimal parameter overhead, the proposed method delivers robust segmentation results with superior structural consistency, achieving a 1.78% improvement over existing parameter-efficient tuning strategies and a 3.44% gain compared to state-of-the-art high-resolution remote sensing segmentation approaches.

Abstract (translated)

超高空间分辨率的土地覆盖分类对于精细土地覆盖分析至关重要,但由于像素级标注成本高、尺度变化显著以及大规模视觉模型适应性有限等原因,这一任务仍然具有挑战性。现有方法通常集中在1米分辨率的影像上,并且严重依赖于注释数据,而实际应用往往需要在弱监督条件下处理更高分辨率的影像。为了解决这个问题,我们提出了一种参数高效的半监督分割框架,用于0.3米空间分辨率的影像。该框架利用了SAM2的知识,并引入了一个针对遥感特定需求设计的FreqWeaver适配器,以增强细粒度细节建模的同时保持轻量级设计(仅占总模型参数的5.96%)。通过有效利用未标注数据并维持最小的参数开销,所提出的方法能够提供结构一致性更强且稳健的分割结果,在现有的参数高效调优策略中提升了1.78%,相比最先进的高分辨率遥感分割方法也提高了3.44%。

URL

https://arxiv.org/abs/2506.15565

PDF

https://arxiv.org/pdf/2506.15565.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot