Paper Reading AI Learner

CC-LEARN: Cohort-based Consistency Learning

2025-06-18 17:41:28
Xiao Ye, Shaswat Shrivastava, Zhaonan Li, Jacob Dineen, Shijie Lu, Avneet Ahuja, Ming Shen, Zhikun Xu, Ben Zhou

Abstract

Large language models excel at many tasks but still struggle with consistent, robust reasoning. We introduce Cohort-based Consistency Learning (CC-Learn), a reinforcement learning framework that improves the reliability of LLM reasoning by training on cohorts of similar questions derived from shared programmatic abstractions. To enforce cohort-level consistency, we define a composite objective combining cohort accuracy, a retrieval bonus for effective problem decomposition, and a rejection penalty for trivial or invalid lookups that reinforcement learning can directly optimize, unlike supervised fine-tuning. Optimizing this reward guides the model to adopt uniform reasoning patterns across all cohort members. Experiments on challenging reasoning benchmarks (including ARC-Challenge and StrategyQA) show that CC-Learn boosts both accuracy and reasoning stability over pretrained and SFT baselines. These results demonstrate that cohort-level RL effectively enhances reasoning consistency in LLMs.

Abstract (translated)

大型语言模型在许多任务上表现出色,但仍难以进行一致且稳健的推理。我们引入了基于群体的一致性学习(CC-Learn),这是一种强化学习框架,通过训练来自共享程序抽象的类似问题群体来提高LLM推理的可靠性。为了强制执行群体级别的一致性,我们定义了一个复合目标,结合了群体准确性、有效问题分解的检索奖励以及对平凡或无效查找的拒绝惩罚,这些是强化学习可以直接优化的目标,而不是监督微调可以做到的。优化这个奖励引导模型采用一致的推理模式贯穿所有群体成员。在具有挑战性的推理基准测试(包括ARC-Challenge和StrategyQA)上的实验表明,CC-Learn相比预训练和SFT基线提升了准确性和推理稳定性。这些结果证明了基于群体的RL有效地增强了LLM中的推理一致性。

URL

https://arxiv.org/abs/2506.15662

PDF

https://arxiv.org/pdf/2506.15662.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot