Paper Reading AI Learner

Leveraging inductive bias of neural networks for learning without explicit human annotations

2019-10-20 19:58:21
Fatih Furkan Yilmaz, Reinhard Heckel

Abstract

Classification problems today are typically solved by first collecting examples along with candidate labels, second obtaining clean labels from workers, and third training a large, overparameterized deep neural network on the clean examples. The second, labeling step is often the most expensive one as it requires manually going through all examples. In this paper we skip the labeling step entirely and propose to directly train the deep neural network on the noisy candidate labels and early stop the training to avoid overfitting. With this procedure we exploit an intriguing property of large overparameterized neural networks: While they are capable of perfectly fitting the noisy data, gradient descent fits clean labels much faster than the noisy ones, thus early stopping resembles training on the clean labels. Our results show that early stopping the training of standard deep networks such as ResNet-18 on part of the Tiny Images dataset, which does not involve any human labeled data, and of which only about half of the labels are correct, gives a significantly higher test performance than when trained on the clean CIFAR-10 training dataset, which is a labeled version of the Tiny Images dataset, for the same classification problem. In addition, our results show that the noise generated through the label collection process is not nearly as adversarial for learning as the noise generated by randomly flipping labels, which is the noise most prevalent in works demonstrating noise robustness of neural networks.

Abstract (translated)

URL

https://arxiv.org/abs/1910.09055

PDF

https://arxiv.org/pdf/1910.09055.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot