Paper Reading AI Learner

Boosting Network Weight Separability via Feed-Backward Reconstruction

2019-10-20 17:04:40
Jongmin Yu, Younkwan Lee, Moongu Jeon

Abstract

This paper proposes a new evaluation metric and boosting method for weight separability in neural network design. In contrast to general visual recognition methods designed to encourage both intra-class compactness and inter-class separability of latent features, we focus on estimating linear independence of column vectors in weight matrix and improving the separability of weight vectors. To this end, we propose an evaluation metric for weight separability based on semi-orthogonality of a matrix and Frobenius distance, and the feed-backward reconstruction loss which explicitly encourages weight separability between the column vectors in the weight matrix. The experimental results on image classification and face recognition demonstrate that the weight separability boosting via minimization of feed-backward reconstruction loss can improve the visual recognition performance, hence universally boosting the performance on various visual recognition tasks.

Abstract (translated)

URL

https://arxiv.org/abs/1910.09024

PDF

https://arxiv.org/pdf/1910.09024.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot