Paper Reading AI Learner

Shoestring: Graph-Based Semi-Supervised Learning with Severely Limited Labeled Data

2019-10-28 21:23:01
Wanyu Lin, Zhaolin Gao, Baochun Li

Abstract

Graph-based semi-supervised learning has been shown to be one of the most effective approaches for classification tasks from a wide range of domains, such as image classification and text classification, as they can exploit the connectivity patterns between labeled and unlabeled samples to improve learning performance. In this work, we advance this effective learning paradigm towards a scenario where labeled data are severely limited. More specifically, we address the problem of graph-based semi-supervised learning in the presence of severely limited labeled samples, and propose a new framework, called {\em Shoestring}, that improves the learning performance through semantic transfer from these very few labeled samples to large numbers of unlabeled samples. In particular, our framework learns a metric space in which classification can be performed by computing the similarity to centroid embedding of each class. {\em Shoestring} is trained in an end-to-end fashion to learn to leverage the semantic knowledge of limited labeled samples as well as their connectivity patterns with large numbers of unlabeled samples simultaneously. By combining {\em Shoestring} with graph convolutional networks, label propagation and their recent label-efficient variations (IGCN and GLP), we are able to achieve state-of-the-art node classification performance in the presence of very few labeled samples. In addition, we demonstrate the effectiveness of our framework on image classification tasks in the few-shot learning regime, with significant gains on miniImageNet ($2.57\%\sim3.59\%$) and tieredImageNet ($1.05\%\sim2.70\%$).

Abstract (translated)

URL

https://arxiv.org/abs/1910.12976

PDF

https://arxiv.org/pdf/1910.12976.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot