Paper Reading AI Learner

A Programmable Approach to Model Compression

2019-11-06 17:14:32
Vinu Joseph, Saurav Muralidharan, Animesh Garg, Michael Garland, Ganesh Gopalakrishnan

Abstract

Deep neural networks frequently contain far more weights, represented at a higher precision, than are required for the specific task which they are trained to perform. Consequently, they can often be compressed using techniques such as weight pruning and quantization that reduce both model size and inference time without appreciable loss in accuracy. Compressing models before they are deployed can therefore result in significantly more efficient systems. However, while the results are desirable, finding the best compression strategy for a given neural network, target platform, and optimization objective often requires extensive experimentation. Moreover, finding optimal hyperparameters for a given compression strategy typically results in even more expensive, frequently manual, trial-and-error exploration. In this paper, we introduce a programmable system for model compression called Condensa. Users programmatically compose simple operators, in Python, to build complex compression strategies. Given a strategy and a user-provided objective, such as minimization of running time, Condensa uses a novel sample-efficient constrained Bayesian optimization algorithm to automatically infer desirable sparsity ratios. Our experiments on three real-world image classification and language modeling tasks demonstrate memory footprint reductions of up to 65x and runtime throughput improvements of up to 2.22x using at most 10 samples per search. We have released a reference implementation of Condensa at https://github.com/NVlabs/condensa.

Abstract (translated)

URL

https://arxiv.org/abs/1911.02497

PDF

https://arxiv.org/pdf/1911.02497.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot