Paper Reading AI Learner

Neural Graph Embedding methods for Natural Language Processing

2019-11-08 04:31:59
Shikhar Vashishth

Abstract

Knowledge graphs are structured representations of facts in a graph, where nodes represent entities and edges represent relationships between them. Recent research has resulted in the development of several large KGs. However, all of them tend to be sparse with very few facts per entity. In the first part of the thesis, we propose three solutions to alleviate this problem: (1) KG Canonicalization, i.e., identifying and merging duplicate entities in a KG, (2) Relation Extraction which involves automating the process of extracting semantic relationships between entities from unstructured text, and (3) Link prediction which includes inferring missing facts based on the known facts in a KG. Traditional Neural Networks like CNNs and RNNs are constrained to handle Euclidean data. However, graphs in Natural Language Processing (NLP) are prominent. Recently, Graph Convolutional Networks (GCNs) have been proposed to address this shortcoming and have been successfully applied for several problems. In the second part of the thesis, we utilize GCNs for Document Timestamping problem and for learning word embeddings using dependency context of a word instead of sequential context. In this third part of the thesis, we address two limitations of existing GCN models, i.e., (1) The standard neighborhood aggregation scheme puts no constraints on the number of nodes that can influence the representation of a target node. This leads to a noisy representation of hub-nodes which coves almost the entire graph in a few hops. (2) Most of the existing GCN models are limited to handle undirected graphs. However, a more general and pervasive class of graphs are relational graphs where each edge has a label and direction associated with it. Existing approaches to handle such graphs suffer from over-parameterization and are restricted to learning representation of nodes only.

Abstract (translated)

URL

https://arxiv.org/abs/1911.03042

PDF

https://arxiv.org/pdf/1911.03042.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot