Paper Reading AI Learner

A Proposed Artificial intelligence Model for Real-Time Human Action Localization and Tracking

2019-11-09 19:59:17
Ahmed Ali Hammam, Mona Soliman, Aboul Ella Hassanien

Abstract

In recent years, artificial intelligence (AI) based on deep learning (DL) has sparked tremendous global interest. DL is widely used today and has expanded into various interesting areas. It is becoming more popular in cross-subject research, such as studies of smart city systems, which combine computer science with engineering applications. Human action detection is one of these areas. Human action detection is an interesting challenge due to its stringent requirements in terms of computing speed and accuracy. High-accuracy real-time object tracking is also considered a significant challenge. This paper integrates the YOLO detection network, which is considered a state-of-the-art tool for real-time object detection, with motion vectors and the Coyote Optimization Algorithm (COA) to construct a real-time human action localization and tracking system. The proposed system starts with the extraction of motion information from a compressed video stream and the extraction of appearance information from RGB frames using an object detector. Then, a fusion step between the two streams is performed, and the results are fed into the proposed action tracking model. The COA is used in object tracking due to its accuracy and fast convergence. The basic foundation of the proposed model is the utilization of motion vectors, which already exist in a compressed video bit stream and provide sufficient information to improve the localization of the target action without requiring high consumption of computational resources compared with other popular methods of extracting motion information, such as optical flows. This advantage allows the proposed approach to be implemented in challenging environments where the computational resources are limited, such as Internet of Things (IoT) systems.

Abstract (translated)

URL

https://arxiv.org/abs/1911.04469

PDF

https://arxiv.org/pdf/1911.04469.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot