Paper Reading AI Learner

Multi-View Camera System for Variant-Aware Autonomous Vehicle Inspection and Defect Detection

2025-09-30 16:08:59
Yash Kulkarni, Raman Jha, Renu Kachhoria

Abstract

Ensuring that every vehicle leaving a modern production line is built to the correct \emph{variant} specification and is free from visible defects is an increasingly complex challenge. We present the \textbf{Automated Vehicle Inspection (AVI)} platform, an end-to-end, \emph{multi-view} perception system that couples deep-learning detectors with a semantic rule engine to deliver \emph{variant-aware} quality control in real time. Eleven synchronized cameras capture a full 360° sweep of each vehicle; task-specific views are then routed to specialised modules: YOLOv8 for part detection, EfficientNet for ICE/EV classification, Gemini-1.5 Flash for mascot OCR, and YOLOv8-Seg for scratch-and-dent segmentation. A view-aware fusion layer standardises evidence, while a VIN-conditioned rule engine compares detected features against the expected manifest, producing an interpretable pass/fail report in \(\approx\! 300\,\text{ms}\). On a mixed data set of Original Equipment Manufacturer(OEM) vehicle data sets of four distinct models plus public scratch/dent images, AVI achieves \textbf{ 93 \%} verification accuracy, \textbf{86 \%} defect-detection recall, and sustains \(\mathbf{3.3}\) vehicles/min, surpassing single-view or no segmentation baselines by large margins. To our knowledge, this is the first publicly reported system that unifies multi-camera feature validation with defect detection in a deployable automotive setting in industry.

Abstract (translated)

确保每辆从现代生产线下来的车辆符合正确的变体规格并且没有可见缺陷,这是一个日益复杂的挑战。我们介绍了一个端到端的多视角感知系统——**自动车辆检测(AVI)平台**,该系统结合了深度学习检测器和语义规则引擎,实现实时的“变体感知”质量控制。 十一台同步相机捕捉每辆车的360度全方位图像;特定任务视图随后被路由到专门模块:使用YOLOv8进行零件检测、EfficientNet用于ICE/EV分类、Gemini-1.5 Flash用于标志OCR(光学字符识别)以及YOLOv8-Seg用于划痕和凹陷的分割。一个视角感知融合层标准化证据,而VIN条件规则引擎将检测到的功能与预期清单进行比较,大约在300毫秒内生成可解释的通过/失败报告。 在一个混合数据集上测试了AVI平台的表现,该数据集包括四个不同车型的原始设备制造商(OEM)车辆数据集和公共划痕/凹陷图像。AVI平台实现了93%的验证准确率、86%的缺陷检测召回率,并且可以每分钟处理3.3辆车,在单视角或无分割基线系统上取得了显著优势。 据我们所知,这是第一个在工业界部署并公开报告的系统,它统一了多相机特征验证与缺陷检测的功能。

URL

https://arxiv.org/abs/2509.26454

PDF

https://arxiv.org/pdf/2509.26454.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot